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Abstract. How do snow distribution patterns influence the surface temperature of snow on sea ice? Despite its crucial

role in the sea-ice energy balance, snow on Antarctic sea ice remains under-sampled and poorly understood. To address

this knowledge gap, we used an Uncrewed Aerial Vehicle (UAV) and ground measurements to produce a Digital Elevation

Model (DEM) of the snow topography and a map of snow surface temperature over relatively uniform landfast sea ice (2.4

± 0.04 m thick) in McMurdo Sound, Ross Sea, Antarctica during our field season in November-December 2022. A key5

methodological innovation in this study is an algorithm that corrects thermal drift caused by Non-Uniformity Correction

(NUC) events in the DJI Matrice 30T thermal camera. The new algorithm minimizes temperature jumps in the imagery,

ensuring consistent and accurate high-resolution (9 cm/px) snow surface temperature maps. Our airborne maps reveal a

mean snow depth of 0.16 ± 0.06 m and a mean surface temperature of -14.7 ± 0.4 °C. As expected, the largest surface

temperature anomalies were associated with visible sediment depositions on the snow surface, which were manually10

identified. We found that the small-scale topography on a seemingly flat snow field significantly influences the incoming

solar radiation (irradiance) at the point scale. Using a model that accounts for topographical effects on irradiance, we found

that assuming uniform irradiance over our study (200x200 m) area underestimated irradiance variability due to relatively

small-scale surface topography. The modeled mean irradiance, which accounts for surface topography is 592± 45 Wm−2

(1 Standard Deviation), whereas the mean measured irradiance at the point scale is 593 ± 20 Wm−2. This shows that15

assuming a flat surface fails to represent the full irradiance range and may impact non-linear energy balance processes.

While we initially hypothesized that snow depth was a key driver of snow surface temperature, our results indicate that

sediment deposition and irradiance exert a far greater influence, overriding the effect of snow depth for this test site. Our

results improve our understanding of snow’s spatial distribution, how it influences snow surface temperatures and how it

may influence the sea-ice energy balance.20

.
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1 Introduction

The effects of climate change have far-reaching consequences in polar environments, particularly in the ice-dominated

high-latitude regions of the Arctic and Antarctica (Callaghan et al., 2011; Simmonds, 2015; Lindsay and Schweiger, 2015;

Meredith et al., 2022). These regions experience polar amplification, a phenomenon where warming is more pronounced25

compared to lower latitudes (Stuecker et al., 2018). As polar ice caps, glaciers, and sea ice melt, the exposed darker

surfaces, such as the open ocean and bare land surfaces, can absorb more solar energy, leading to further increases

in melting and darkening. These changes in the ice-albedo feedback lead to more warming and influence large-scale

atmospheric circulation patterns (Perovich et al., 2007).

Sea ice growth and decay play a key role in this ice-albedo feedback loop (Riihelä et al., 2021). The annual growth30

cycle of sea ice is one of the most extensive changes observed on Earth’s surface (Parkinson, 2014), and its long-

term trend differs significantly between the Arctic and Antarctica. Arctic sea ice has experienced a trend of rapid sea

ice loss (Lindsay and Schweiger, 2015). In contrast, the minimum Antarctic sea ice extent exhibits more variability, with

a general increase through the satellite period until 2016, and a decrease thereafter. Recent records show the lowest

minimum extent since record-keeping began (Wang et al., 2022). The thickness, extent, and duration of sea ice impact the35

absorption and reflectance of solar radiation, thereby influencing the Earth’s energy balance (Massom and Stammerjohn,

2010). Additionally, sea ice affects ocean circulation patterns, ecosystems, and the carbon cycle (Stein et al., 2020;

Massom and Stammerjohn, 2010).

Snow cover is a critical factor in sea ice thermodynamics, impacting interactions between sea ice and the atmosphere

(Landrum and Holland, 2022). Snow, one of the most insulating natural materials, is a barrier to heat exchange between40

the ocean, sea ice, and atmosphere (Webster et al., 2018). It also has a high albedo, up to 0.9, compared to the albedo

of bare sea ice (∼0.4-0.6) or the open ocean (0.06) (Perovich et al., 2007; Brandt et al., 2011; Light et al., 2022; Smith

et al., 2022), enhancing reflectance and influencing regional and global climate by affecting heat and mass balance (Zatko

and Warren, 2015). Snow accumulation and metamorphism impact the conductive and radiative properties of sea ice,

affecting its thickness, salinity, temperature, and permeability, highlighting the importance of understanding snowpack45

dynamics (Sturm et al., 1997; Perovich and Polashenski, 2012). For these reasons, our original hypothesis was that snow

surface temperatures over sea ice with relatively uniform thickness would strongly correlate with snow depth, because of

snow’s high albedo and low thermal conductivity.

Snow on sea ice research is predominantly focused on Arctic conditions, with the Multidisciplinary Drifting Observatory

for the Study of Arctic Climate (MOSAiC) providing substantial insights into the sea-ice system, including snow (Nicolaus50

et al., 2022; Macfarlane et al., 2023). However, Antarctic snow on sea ice differs markedly from its Arctic counterpart, with

large spatial variability depending on the location. Antarctic snow is generally thicker (Arndt et al., 2017; Arndt and Paul,

2018; Nicolaus et al., 2021; Lawrence et al., 2024) colder, and persists throughout the year, contrasting with the thinner,

warmer snow in the Arctic (Massom et al., 2001). In McMurdo Sound, snow on sea ice persists through summer until

breakout, but is generally thinner than in other Antarctic fast ice regions (Brett et al., 2020). This persistent snow cover55
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influences sea ice albedo, primarily through snow thickness and physical properties such as specific surface area, salinity

and liquid water content in summer (Zhou et al., 2001). In some areas in Antarctica, like the Weddel Sea, the thick snow

cover and thinner sea ice lead to flooding, where the weight of the snow depresses the ice surface, allowing seawater to

infiltrate the snow. This seawater-saturated snow then refreezes, resulting in snow-ice formation and thickening of the ice

from above (Eicken et al., 1994; Massom et al., 2001; Arndt et al., 2017).60

Despite the critical role of snow on sea ice dynamics, there is a significant knowledge gap regarding Antarctic snow

properties. Comprehensive datasets are notably limited, especially concerning the spatial evolution of snow on sea ice

(Eicken et al., 1994; Massom et al., 2001; Brandt et al., 2005; Sturm and Massom, 2016; Arndt and Paul, 2018). In

McMurdo Sound, for example, research is sparse and fragmented (Price et al., 2013, 2019; Brett et al., 2020). Recent

advancements, such as the Tan et al. (2021) airborne study provide valuable data into snow depth distribution, but65

underscore the need for more extensive datasets to address critical gaps in our understanding of Antarctic snow on sea

ice dynamics. The lack of comprehensive snow data on Antarctica sea ice, and the significant differences between the

Antarctic and Arctic lead to biases in modeling sea ice behavior and errors in global climate system scenarios (Wever

et al., 2021; Landrum and Holland, 2022).

To collect data on the physical properties of snow on Antarctic sea ice, drones are a promising tool (Gaffey and Bhard-70

waj, 2020; Pirazzini et al., 2021; Román et al., 2024). They have been widely used in scientific studies of the cryosphere

outside the polar regions (Buhler et al., 2016; Sproles et al., 2020). Drones can cover extensive areas and simultaneously

measure certain snow parameters at very high resolution, bridging the gap between point-based ground measurements

and low-resolution satellite remote sensing (Wigmore et al., 2019; Tan et al., 2021; Wigmore and Molotch, 2023), and

even provide opportunities for validating satellite remote sensing products. For example, airborne laser scanning has been75

used to assess ICESat-2’s ability to capture sea ice surface topography and roughness, revealing limitations in detecting

small-scale features such as ridges and cracks (Ricker et al., 2023). Similarly, drone-based observations could contribute

to validating missions like PREFIRE (Kahn et al., 2020), which aims to improve our understanding of the Earth’s energy

budget in polar regions.

Our study has two primary objectives: (1) To quantify the spatial variability of snow cover on landfast, flat sea80

ice and test our hypothesis that snow thickness (which affects albedo and thermal resistance) determines snow

surface temperatures and energy balance of the sea ice system, over relatively uniform sea ice. To achieve this

first objective, we required a high-resolution dataset capable of capturing and quantifying the variability across different

scales. Thus, (2) we aimed to develop and validate a method of accurately mapping snow surface topography

and surface temperature on flat sea ice in the polar regions. We used multi-spectral (visible, infrared) UAV imagery85

at sub-metre spatial resolution, closely following the workflow published by Wigmore et al. (2019). To achieve this, we

integrate airborne surface elevation and temperature data collected in November 2022 with ground-based surveys of

snow depth, snow surface temperature, and ice thickness. The datasets from objective (2), combined with topography-

dependent irradiance modeling, allowed us to examine how snow cover depth influences snow surface temperatures.

While our extensive dataset did not confirm our relatively simple hypothesis, highlighting once again the complexity of90
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Figure 1. Landsat image from November 6, 2022. (a) Study area (black star) in West Antarctica, McMurdo Sound, and Ross Island

with Scott Base (NZ), McMurdo Station (USA), and the Camp Site (CS) test field(yellow rectangle). (b) CS location on the ice wedge

between the Ross Ice Shelf and the tip of Ross Island.

snow on sea ice, our research provides new insights into how small-scale surface roughness affects the sea ice’s energy

balance. Moreover, it offers a novel, much-needed snow dataset aimed at improving climate model accuracy.

2 Methods

During a field campaign in November 2022 (4 weeks), we collected snow and sea ice data on the fast ice in front of the

McMurdo Ice Shelf, Ross Sea, about 5 km southwest of Scott Base and McMurdo Station. We collected a new and unique95

airborne dataset consisting of aerial Red, Green, Blue (RGB) and Thermal InfraRed (TIR) images of the snow surface

along with photogrammetrically derived digital elevation models; which we validated and correlated with ground-based

surface temperature, snow depth, and ice thickness surveys.

2.1 Study site and conditions

McMurdo Sound is located in West Antarctica, in the southwestern part of the Ross Sea, framed by Ross Island to the100

east, the Ross Ice Shelf to the south, and Victoria Land to the west (Fig. 1a). McMurdo Sound has a variable snow
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cover of 0.1 – 0.3 m (Brett et al., 2020) and limited snow-ice formation compared to wetter regions like the Weddell Sea

(Maksym and Markus, 2008). The landfast sea ice is usually 2 – 2.5 m thick (Brett et al., 2020), and there is an extensive

sub-ice platelet layer (up to 9 m) due to the proximity of the Ross Ice Shelf and its super-cooled water supply (Gough

et al., 2012; Langhorne et al., 2015; Haas et al., 2021). During our field campaign, the average wind speed was 4.7 ms−1,105

and the average temperature was -14.2 °C (Fig. A1).

Usually, sea ice formation starts in March and lasts until October, followed by a break-out in January/February. In 2022,

the sea ice formation was highly impacted by southerly storms repeatedly interrupting the sea ice formation cycle, similar

to the conditions in winter 2019 (Leonard et al., 2021). Except for a small "wedge" of ice pinned between the front of

the ice shelf and the tip of Ross Island (Fig. 1b), the Sound remained largely ice-free until August 2022. As a result,110

two distinct sea ice types formed: "old ice", which began forming in the typical cycle around March/April and reached

a thickness of about 2.5 m during our field campaign, and "new ice", which started forming only after August 2022 and

grew to about 1-1.5 m thickness by November 2022. During the November 2022 field campaign, we collected data on five

200x200 m sites with different snow and ice conditions, of which we only discuss one in this study. The data in this paper

were collected at our main test site (Camp Site; CS), a 200x200 m area located on the flat "old ice", during November115

2022 (Fig. 1b, yellow rectangle). The other four sites are outside the scope of this paper and we will present them in a

follow-up study, which will focus less on the techniques and more on the differences between the sites.

2.2 Ground-based data

Our ground-based dataset consists of automated radiation data, weather data, and snow and ice depth measurements.

All sensors, instruments and parameters used in this study are listed in Table 1.120

2.2.1 Radiation and weather data

We installed automated measurement stations to capture the local radiation, surface temperature, and weather conditions

and validate and correct the airborne measurements. The radiation station was outfitted with a pair of Kipp&Zonen CMP22

pyranometers, one facing upward and one facing downward, to measure the broadband incident (Sw↓) and reflected

(Sw↑) solar irradiance in the 200-3600 nm wavelength range, and a pair of Kipp&Zonen CGR4 pyrgeometers, one facing125

upward and one facing downward, to measure the broadband incoming (Lw↓) and outgoing (Lw↑) longwave radiation in

the 4500-42000 nm wavelength range. The sensors were ventilated, and according to the manufacturer’s specifications,

the nominal accuracy of the Sw and Lw measurements is 1% and 3%, respectively. The radiation station also included

a DeltaT SPN1 radiometer that measured broadband global and diffuse incident irradiance (Sw↓ and Swdiff↓) in the

400-2700 nm wavelength range. According to the manufacturer, the nominal accuracy of both measurements is ± 8 %.130

Inter-calibration studies have shown that an extra factor of 1.05 should be applied to Swdiff↓ to compensate for its

systematic underestimation (Badosa et al., 2014). A stationary Apogee infrared radiometer (model SI-121-SS) installed

slightly north of the radiation station was pointing at clean snow ("cold target") with an angle of approximately 45 ° mounted

at 1.2 m height, leading to an elliptical footprint of about 1.6 m2. The data were logged every 10 s. A non-stationary Apogee

5
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Table 1. Summary of ground-based and airborne instruments with measurement parameters and uncertainties used in this paper. The

uncertainty for the airborne snow depth (∗) is the propagated error counting for the magnaprobe snow depth error and the GCP error

in the z-direction.

Airborne Ground-based Parameter Instrument/Method Unit Uncertainty

x Ice Thickness Geonics EM31 m ± 0.1

x Snow Depth SnowHydro magnaprobe m ± 0.01

x Snow Depth (Proxy) DJI Matrice 30T m ± 0.05∗

x Surface Temperature Apogee SI-121-SS °C ± 0.2

x Surface Temperature DJI Matrice 30T °C ± 2

x Wind Direction
R.M. Young Heavy Duty Wind Monitor

HD-Alpine
° ± 3

x Wind Speed
R.M. Young Heavy Duty Wind Monitor

HD-Alpine
ms−1 ± 0.3

x Air Temperature Vaisala HMP155 Temperature Probe °C
± (0.226 - 0.0028

× temperature)

x Relative Humidity Vaisala HMP155 Temperature Probe % ± 2%

x
Incoming/Outgoing

Shortwave Radiation

Kipp & Zonen

CMP22 Pyranometer
Wm−2

± 1.2% to

± 1.4%

x
Incoming/Outgoing

Longwave Radiation

Kipp & Zonen

CGR4 Pyrgeometer
Wm−2

± 1.5% to

± 2.0%

x Location (Long/Lat) Septentrio AsteRx m
± 0.01 horizontally

± 0.02 vertically

infrared radiometer (model SI-121-SS) on a tripod was placed in the test field. It pointed at a sediment patch ("sediment135

target") mounted at 1.02 m, with a footprint of 0.35 m2. We collected meteorological data (wind speed, air temperature,

precipitation and relative humidity) with an automated weather station (AWS) at 10-minute intervals.

2.2.2 Snow depth

To capture the spatial distribution of snow depth, we conducted magnaprobe transects (Sturm and Holmgren, 2018).

The magnaprobe is a user-friendly device that allows for rapid snow depth measurements. The snow depth is measured140

by inserting a 1.53 m steel rod with a sliding ring magnet inside a plastic disk into the snow until the tip of the rod hits

the ground. An electronic pulse from a magnetostrictive sensor determines the position of the magnet, converting the

signal into the distance from the rod’s tip to the disk and indicating snow depth. The snow depth and the GPS position

(GARMIN™ receiver and Campbell Scientific antenna) are recorded with a Campbell Scientific CR800 data logger Sturm

and Holmgren (2018). The accuracy of the snow depth depends on (1) the hardness of the underlying surface (a too-soft145

material will cause compaction and over-probing), (2) the positioning of the plastic disk on the snow surface and (3) the
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correctness of the vertical angle. For our measurement campaign, the uncertainty is mainly influenced by (2) and (3) as

the snow surface is relatively hard and uneven, affecting the insertion of the probe and the ability of the plastic disk to lie

flat on the snow surface. We assume the measurements are within a ± 0.02 m uncertainty, which is slightly larger than

the 0.01 m assumed for the winter MOSAiC measurements over likely similar roughness (Itkin et al., 2023). The GPS150

accuracy is ± 2.5 m. Our measurement strategy was to conduct transects along the measurement field borders and a

cross through the middle, taking a measurement approximately every meter, which resulted in 813 measurements for this

particular "study field".

2.2.3 Ice thickness

We used the Geonics electromagnetic conductivity meter (EM31) combined with manual drilling to survey the ice thick-155

ness. The EM31 is a geophysical instrument that measures sea ice conductivity and in-phase components to detect

subsurface features (Tateyama et al., 2006). It operates based on the principles of electromagnetic induction. The EM31,

consisting of a transmitter and receiver coil, was mounted on a sledge and towed over the snow by a snow machine. The

transmitter coil emits a primary electromagnetic field into the ground, and as the field penetrates the ice, it reaches the

conductive seawater beneath. This causes strong eddy currents to form, generating a secondary electromagnetic field.160

The receiver coil detects this secondary field, which is altered by the distance it travels through the ice. The EM31 mea-

sures the apparent conductivity of the subsurface and the phase shift between the primary and secondary fields. These

measurements are recorded continuously as the instrument is moved across the ice. To account for local variations in

ice thickness and device calibration, we took direct ice thickness measurements at various points (approximately every

50 m) using a Covacs ice drill. We used the same survey pattern for the EM31 ice thickness measurements as for snow165

depth. While there is a significant platelet ice layer in our survey field, we excluded it from our ice thickness evaluation by

calibrating the EM31-signal to ice and snow thickness only. The snow and ice thickness was calculated following a linear

regression between conductivity and manually measured ice and snow thickness at the CS test field:

hice+snow =−0.0103 ∗κ + 4.2285 (1)

with hice+snow the combined ice and snow thickness and κ the conductivity. During our surveys the EM31 was mounted170

0.5 m above the surface (snow or ice depending on the measurement location) on a sledge that was pulled with a snow

machine. To calculate only the ice thickness, we subtracted the sledge height as well as the average snow depth of 0.16 m

(Fig. 11a).

2.3 Airborne data

We used a DJI Matrice 30T, a multi-rotor (quadcopter) UAV with self-heating batteries, suitable for operations in polar175

conditions (temperature range from -20 to +50 °C). The UAV has a wide-angle camera (12 megapixels) for RGB images

and a thermal camera (Uncooled Vox Microbolometer, long-wave infrared spectrum 8-14 µm, 1.31 megapixels) for TIR
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images with an accuracy of ± 2 °C or ±2 % (Da Jiang Innvoations (DJI), 2022). The exact wavelength for the wide angle

and TIR camera is unknown.

To retrieve RGB and TIR imagery, we programmed two missions following a lawnmower cross-grid survey pattern at180

two different flight altitudes, and executed them on November 14, 2022. The first flight at 60 m altitude took off at 22:12:00

and finished at 22:31:19 (UTC). We changed the batteries and executed the second flight at 75 m altitude, with the take-

off at 22:44:45 and landing at 23:01:37 (UTC). The frontal overlap of the images was set to the maximum of 95 % and

the side overlap to 80 %. The high frontal overlap only affects the frequency at which the pictures are taken and does not

affect the flight pattern or flight time. The RGB and TIR images were shot simultaneously.185

2.3.1 Georeferencing

To georeference the RGB and TIR images, we used 10 targets as Ground Control Points (GCPs) on the snow surface

across the 200x200 m measurement area before the drone flight. The RGB targets were 0.3x0.3 m sheets of yellow

coroplast plastic, with a pink duct-tape cross defining a centre point. For the TIR survey, 0.4x0.4 m black targets were

installed next to the RGB targets. As back (hot) targets, we used thermal insulation material, similar to camping mats,190

that was black on the top side, with silver-colored foil as backing (similar to first aid blankets) at the bottom. The location

of each of the RGB targets was measured using dual-frequency GNSS receivers, and post-processing was done using

the Precise Point Positioning kinematic method (Malinowski and Kwiecień, 2016) and the software «teqc»(Estey and

Meertens, 1999).

2.3.2 Digital Elevation Model (DEM)195

We derived the DEM from the RGB images following the workflow detailed in Fig. 3. First, we generated the sparse

point cloud through image alignment and tie-point generation. After georeferencing using GCPs from both RGB and TIR

images, we optimized the sparse cloud by removing outliers with poor accuracy values. We then created a dense point

cloud, generated a triangular irregular network (TIN) mesh and finally calculated the RGB orthomosaic (2 cm/px ground

resolution) and DEM (5 cm/px ground resolution). We upscaled both to 9 cm/px to match the TIR orthomosaic resolution.200

The projection error for the RGB orthomosaic and DEM is 0.96 px, and the GCP errors in x, y, and z directions are 0.05 m,

0.05 m and 0.04 m.

As the last processing step, we detrended the DEM by fitting a planar surface to the elevation data and subtracting this

fitted plane from the original DEM. The trend is likely due to the time window of about 3 hours between when the GCP

survey was conducted and when the site was flown, as the site is influenced by tidal variations, which are about 0.2 m205

for this 3-hour time window as shown in Fig. A4. We fitted a plane through the DEM to remove this trend, determined the

best-fit parameters for the plane, and subtracted it from the original DEM, producing a detrended DEM. This allowed us

to focus on analyzing the smaller-scale topographical features of the snow surface, which is the aim of this study.

8

https://doi.org/10.5194/egusphere-2025-1601
Preprint. Discussion started: 14 May 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 2. (a) Histogram representing an estimate of the Probability Density Function (PDF) of the elevation in m from the DEM and the

snow depth in m from the magnaprobe transect. The offset between the minimum elevation value and minimum snow depth value is

at 0.16 m. (b) Histogram (PDF) of the offset corrected DEM elevation in m (now: snow depth proxy) and the snow depth in m from the

magnaprobe transect.

2.3.3 Snow depth proxy

Mapping snow depth typically requires surveying the area both when it is snow-free and when it is snow-covered. How-210

ever, this approach was not feasible in our case because the underlying surface is sea ice, which was never snow-free

(for our field work window) and continuously changed in elevation due to tides, thickening, and thinning processes. To

address this challenge, we developed an alternative method (Fig. 2) to approximate snow depth using the detrended DEM

(Fig. 8b). Without a bare-ground Digital Terrain Model (DTM), we assumed the underlying sea ice surface was flat and

smooth (Fig. 7, A1), and we interpreted the DEM elevations as representing the snow surface topography. To calculate215

a snow depth proxy, we applied a single value offset correction based on the ground-based magnaprobe measurements

to correct the differences between DEM elevation and actual snow depth (Fig. 2a). The offset (0.16 m) was calculated

as the difference between the minimum magnaprobe snow depth value (0.012 m) and the minimum DEM elevation value

(-0.149 m, Fig. 2a). The 0.16 m offset was added to the DEM elevation to calculate a snow depth proxy for each pixel,

as shown in Fig. 2b. While the magnaprobe measurements (with a snow depth error of ± 0.02 m) provided a valuable220

correction, the resulting values remain a proxy rather than exact snow depths. A key limitation is that the magnaprobe lo-

cations were not surveyed with high-accuracy GNSS, preventing a precise validation of our approach. As a workaround,

we relied on the assumption of a smooth ice surface, which is supported by field observations (Fig. A1) but does not

account for potential localized roughness variations that were not sampled. Additionally, an estimated vertical uncertainty

of ±0.04 m from ground control points (GCPs) results in a total propagated error of approximately ±0.05 m for the snow225

depth proxy.
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2.3.4 TIR image processing: File conversion RJPEG to TIFF

The first step is to convert the TIR images from the proprietary Radiometric JPEG (RJPG) format, primarily used by ther-

mal sensors (e.g. FLIR), to Tagged Image File Format (TIFF) using the ImageJ IR UAV plugin (Pereyra Irujo, 2022). This

conversion is necessary because the RJPG format retains absolute brightness temperature values in degrees Celsius230

but does not support temperature extraction and analysis in its native form. For the conversion from RJPG to TIFF with

the ImageJ IR UAV plugin, we used the following input parameters: reflected surface (snow) temperature -13.2 °C, relative

humidity 65.2 % based on our automated measurements from the AWS during the flight time, an object (snow) emissivity

of 0.98 and an object distance of 25 m. The exact values of these parameters are not critical because we calibrate the

brightness temperatures with ground surface temperature measurements. However, these initial parameters are needed235

for the file format conversion. After that initial step, all data was processed using the SfM workflow implemented in Agisoft

Metashape Pro version 1.8.4 (build 14856, 64-bit). Our workflow is closely aligned with Wigmore and Molotch (2023),

with processing details described in Fig. 3.

2.3.5 TIR image processing: Non-Uniformity Correction (NUC)

The thermal camera of the DJI Matrice 30T uses an uncooled microbolometer, which is prone to non-uniformities in its240

sensor array; each pixel responds slightly differently to the same temperature. To correct for measurement drift caused by

these differences, the camera performs periodic internal calibrations known as Non-Uniformity Correction (NUC) events.

This process involves a shutter that blocks the lens, providing a uniform temperature source for calibration. The camera

measures each pixel’s response to this source and adjusts its settings to correct any discrepancies. After calibration, these

adjustments ensure accuracy and uniformity in subsequent images. The frequency of NUC events varies depending on245

the camera model and environmental conditions, but it is often not documented and seldom adjustable for off-the-shelf

drones, like the DJI Matrice 30T. Consequently, temperature differences of up to 1.5 °C can occur in consecutive TIR

images taken before and after a NUC event, as shown in Fig. 4a (red and yellow dots, respectively).

We present a novel algorithm to correct for temperature discrepancies caused by NUC events based on the steps listed

below.250

Step 1: Read sequential image pairs (RJPG; 1280x1024 px)

Step 2: Identify overlapping areas in each image pair (in this dataset, the overlap is at least 70 %). We do this by finding

and extracting unique features to ensure identical regions in each image pair. For this, we use the Oriented FAST

and Rotated BRIEF (ORB algorithm) detector, which combines two key components: FAST (Features from Accel-

erated Segment Test) and BRIEF (Binary Robust Independent Elementary Features Descriptor). FAST identifies255

interesting points (corners) in an image, similar to spotting unique landmarks on a city map. BRIEF then describes

these corners using compact binary "fingerprints," analogous to noting a landmark’s distinctive features (e.g., "a

red brick house with a tall chimney"). The ORB algorithm enables efficient and robust feature matching between

images (Rublee et al., 2011; Bradski, 2000). Then, we use the Brute-Force Matcher (Bradski, 2000) to calculate
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RGB: DENSE CLOUD
High-quality and aggressive

point-cloud filtering

RGB: MESH
Triangular irregular network (TIN) mesh generated

from the dense cloud; TIN mesh smoothed

RGB: ORTHO
    Orthomosaic upscaled to 9cm/px to match TIR product 

(original resolution 5cm/px)

RGB: DEM
    Digital Elevation Model (DEM) upscaled to 9cm/px
to match TIR orthomosaic (original resolution 5cm/px)

DEM: DETREND
Detrend the DEM and correct offset with groundbased

magnaProbe snow depth measurements

 Oval image mask applied to account for the vignette effect (corners of the
image are cooler than the centre) in thermal images due to the lens

properties, sensor characteristics and optical aberrations. 

TIR: DENSE CLOUD
High-quality and aggressive point-cloud filtering

TIR: MESH
Triangular irregular network (TIN) mesh generated from the

dense cloud; TIN mesh smoothed

TIR: ORTHO
    Orthomosaic (9cm/px ); Manually delete corner images that

cause motion blur; Calculate the final orthomosaic for TIR images

TIR ORTHO: TEMPERATURE CALIBRATION
Correction of TIR orthomosaic with groundbased radiation datasets 

(Eq. 3 and 4) 

Convert TIR files from RJPEG to TIFF(ImageJ IR UAV plugin)
IR:CONVERSION

IR:NUC CORRECTION
Identify NUC events (RJPEG, TIFF) and apply correction

algorithm (Eq.1 & 2) to TIFF files to correct for NUC events

SPARSE POINT CLOUD

GEOREFERENCING

Image tie-point generation, alignment, sparse point-cloud generation 
Key point limit: 120 000, Tie-point limit: 30 000, Alignment accuracy: highest level

OPTIMISATION
Optimisation of the sparse cloud; Thinning of the sparse cloud (outlier removal) based on

reprojection error (<1 px); reconstruction uncertainty (<50 px); and projection accuracy (<10 px)

Identiffying GCPs (visible targets) in the RGB images;
Defining GCPs (thermal targets) in TIR images

DEM: OFFSET CORRECTION 
Correct offset with groundbased

magnaProbe snow depth measurements

TIR: VIGNETTE CORRECTION

Incoming longwave
radiation and 
brightness temperature 

Ground-based

MagnaProbe snow 
depth measurements
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Figure 3. Workflow for processing and analyzing RGB and TIR images captured with the DJI Matrice 30T during two flights in 60

and 75 m altitude. The process includes converting RJPG images to TIFF format using the ImageJ IR UAV plugin, applying the NUC

correction algorithms for the internal camera calibration, and processing both TIR and RGB images through photogrammetry steps

in Metashape. Key steps include sparse point-cloud generation, georeferencing, optimization, dense cloud generation, mesh creation

and the DEM and RGB/TIR orthomosaic production. Then, we apply a final offset correction using ground-based magnaprobe snow

depth measurements and the surface temperature calibration using ground-based Apogee temperature data.
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Figure 4. Illustration of NUC events (a) and their correction (b) for the first flights at 60 m altitude. (a) Mean brightness temperature

(Tbrightness) for overlap area per image. Red dots indicate Tbrightness before the NUC event, and yellow dots indicate Tbrightness after the

NUC event. NUC events are temperature jumps of more than 0.5 °C in two consecutive images. The blue dot indicates a temperature

outlier for one image, which is not a NUC event. (b) The same dataset after the correction algorithm (Eq. 2 and Eq. 3) is applied.

corresponding points and select the 50 best feature matches in each image pair to estimate a homography matrix,260

which describes the geometric relationship between the two images.

Step 3: For each pair of successive images, the first image is warped to align with the grid of the second image to ensure

accurate overlap and compensate for camera movement.

Step 4: Extraction of brightness temperatures from each pixel. From here on, we use the converted TIFF images (TIFF;

640x512 px).265

Step 5: For each TIFF image, calculation of the mean brightness temperature Tbrightness of the area overlapping with the

following image. Ideally, the Tbrightness of the same overlapping area in different images should match, as the thermal

images were captured nearly simultaneously. However, due to temperature drift and NUC events, discrepancies

arise and must be corrected.
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Step 6: Identification of NUC events. A NUCi event, with i = 1, ...m (m being the total number of NUC events during the270

considered flight), is identified when the absolute differences between the Tbrightness of overlap regions in consecu-

tive images is > 0.5 °C (Fig. 4a). Between two NUC events, NUCi and NUCi+1 there are n images Ij, with j = 1, ...n

(n being the number of TIR images taken between two consecutive NUC events). For image Ij, Tbrightness(i,j) repre-

sents the mean temperature of image Ij+1 (in the overlap region). We do not consider a temperature change > ±
0.5 °C to be a NUC event if it affects one image only (e.g. Fig. 4a: blue dot).275

Step 7: Correction of the temperature drift between two consecutive NUC events. We assume that the temperatures

measured immediately after the NUC events are accurate, and that the temperature drift (drift rate di) over the n

images between two consecutive NUC events (NUCi and NUCi+1) is linear:

di = (Tbrightness(i+1,1)−Tbrightness(i,n))/n (2)

where Tbrightness(i,n) is the mean temperature of the overlap area in the final image n in the series after the NUCi280

event (red dots in Fig. 4), and Tbrightness(i+1,1) is the mean temperature of the overlap area in the first image after

the NUCi+1 event (yellow dots in Fig. 4). di is then applied to calculate the linear correction ci,j for the Tbirghtness(i,j)

mean temperatures of the j = 1, ...n images between NUCi and NUCi+1:

ci,j = j ∗ di (3)

The brightness temperature of each pixel in each TIR image is then corrected by adding ci,j.285

To understand the improvement achieved with this temperature correction procedure, we analysed the temperature in

250 random areas of 10x10 m2 taken from the NUC uncorrected and NUC corrected TIR orthomosaics. While the NUC

correction algorithm is applied sequentially (it depends on the order of images), we found that this analysis does not

depend on the order in which the images were taken. For each of the 250 areas that contained at least 10 images, we

calculated the temperature anomaly per image by subtracting the mean areal temperature from the mean image temper-290

ature Tbrightness. By comparing the temperature anomalies in the NUC uncorrected and NUC corrected TIR orthomosaic,

we can assess the algorithm’s impact performance in reducing drift and variability of temperature anomalies (Fig. 5a,

dark grey vs. light grey) across the dataset.

In the NUC uncorrected TIR orthomosaic, the spread of anomalies ranged between ± 4 °C due to the temperature drift

in between NUC events and the consequent variability in Tbrightness among the images capturing the same overlapping295

area. In the NUC corrected TIR orthomosaic, the distribution of temperature anomalies narrowed to the range ± 2 °C,

there were fewer outliers, and the whiskers of the temperature anomaly boxplot shrank (Fig. 5a and b). This suggests

that our correction improved the repeatability of Tbrightness at each site, reaching an accuracy comparable to the sensor
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Figure 5. (a) The Kernel Density Estimate (KDE) function and boxplots (b) showing the distribution of brightness temperature anomalies

in the 250 randomly sampled areas of 10x10 m2 taken from the NUC uncorrected (dark grey) and NUC corrected (light grey) TIR

orthomosaics.

uncertainty (see Sect. 2.3. The Root Mean Square (RMSE) of the temperature anomalies across all 250 sampled areas

was 1.11 °C in the NUC uncorrected orthomosaic and decreased by 0.53 °C in the NUC corrected orthomosaic.300

2.3.6 TIR orthomosaic

To produce the TIR orthomosaic, we first generated the sparse point cloud through tie-point generation, alignment, and

cloud creation. After georeferencing with GCPs from both RGB and TIR images, we optimized the sparse cloud by

removing outliers. We then created a high-quality, dense point cloud, generated a TIN mesh, and applied a vignette

correction mask. The vignette correction mask is applied to account for the temperature distortion at the edges (corners)305

of the TIR images, which tend to be cooler than the centre due to lens properties, sensor characteristics, and optical

aberrations (Wigmore and Molotch, 2023). We then calculated the first orthomosaic, we manually corrected motion blur

in the corner areas, and produced the final orthomosaic, which was then calibrated using the ground-based Apogee

temperature dataset (see the following section 2.3.7). The TIR orthomosaic has a reprojection error of 0.6 px and GCP

errors in x, y and z-directions of 0.008 m, 0.003 m and 0.001 m. The workflow is summarized in Fig. 3.310

2.3.7 TIR orthomosaic: Ground-based temperature calibration

To derive the surface temperature orthomosaic, we calibrated the brightness temperatures of the TIR orthomosaic using

surface temperature data obtained from sea-ice-based observations. We calculated the snow surface temperature from

the brightness temperature measured by the Apogee infrared radiometer, accounting for the contribution of the reflected

fraction of downwelling longwave radiation measured with a Kipp and Zonen CGR4 pyrgeometer (Apogee Instruments315

INC., 2022):
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Tsurface =
4

√
T4

Apogee− (1− ϵ)Lw↓/σ

ϵ
(4)

where Tsurface is the surface temperature (K), TApogee is the surface brightness temperature measured with the Apogee

sensor (K), ϵ = 0.98 is the snow thermal emissivity, and σ is the Stephan-Boltzman constant.

In Fig.6a, we present the surface temperature time series of the snow surfaces within the footprints of the two Apogee320

infrared radiometers during the flights, alongside the Tbrightness of the corresponding TIR images (with an RMSE of 0.58 °C)

that cover the two footprints. We extracted Tbrightness within the Apogee sensor footprints from the TIR images and plot-

ted it against the Apogee-measured surface temperatures (Tsurface) in Fig.6b. We calibrated the airborne brightness

temperatures to surface temperatures by calculating the best (linear) fit between the Apogee-measured, sea ice-based

surface temperatures Tsurface and the collocated, simultaneous TIR image brightness temperatures Tbrightness. To match325

the airborne data points with the higher-resolution (10 s) sea ice-based measurements, we averaged the three Tsurface

measurements taken before and after the Tbrightness timestamp. We used this dataset to calculate the linear fit:

Tcalibrated = 0.68 ∗Tbrightness− 4.44 (5)

This equation is applied to each pixel in the TIR orthomosaic. The RMSE of the residuals of this linear fit is 0.48 °C.

The square root of the sum of the squared uncertainty of this fit, the square of the thermal camera uncertainty (± 2 °C ),330

and the square of the RMSE associated with the NUC correction (0.58 °C) provides a total uncertainty of ± 2.1 °C for the

the surface temperature derived from airborne thermal imagery.

2.3.8 Detection of sediment deposition

In this study, we use the red band (wavelengths > 0.6 µm) of the RGB orthomosaic to detect visible sediment deposition

on snow. Snow albedo is most sensitive to impurities in the visible wavelengths (Warren and Wiscombe, 1980), and we335

found the most contrast in the red band, where, qualitatively, sediment patches stand out more clearly against the bright

snow background. We do not use the red band to quantify impurity levels because variations in camera settings during

the flights affect the light captured, requiring standardization across the resultant images.

2.3.9 Irradiance calculation

We utilized the derived DEM to calculate the distribution of received solar radiation (irradiance) over the mapped surface340

roughness features, considering the surface aspect and slope and the solar position during the flight. Using a terrain-

corrected radiative transfer model based on measured direct and diffuse components of shortwave radiation (Badosa

et al., 2014), the model projects direct radiation onto an inclined surface using slope, aspect, solar zenith, and solar

azimuth angles. Terrain shading is accounted for using the digital elevation model by Corripio (2003), and the measured

diffuse radiation is applied to shaded areas. This approach follows established methods like those described by Dozier345
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Figure 6. (a) The time series (line plots) of surface temperatures measured on November 14th, 2022 with the two Apogee sensors

(Table 1) – snow with visible sediment particles (yellow), and clean snow without visible sediment particles (blue). The dots are Tbrightness

from all TIR images (NUC corrected) that contain the Apogee sensor’s footprint with the temperature anomaly RMSE of 0.58 °C that

results from the correction equation (eq. 2 and 3). (b) Scatter plot with ground-based temperatures measured by Apogee sensors

(Tsurface) at the two targets against the Tbrightness from TIR images that encompass the footprints of these sensors. The black line is the

best linear fit. The error bars indicate the temperature anomaly RMSE of 0.58 °C and the manufacturer’s uncertainty for the Apogee

sensor, respectively.

and Frew (1989). However, instead of calculating the radiative transfer through the atmosphere, we directly use the

measured global and diffuse radiation during the flight window (594 Wm−2 and 71 Wm−2, respectively), we calculated

the angle between the sun’s rays and the surface normal, considering the various slopes and aspects of the sea-ice

surface features.

3 Results350

Here, we present the results from our airborne and ground-based surveys over the 200x200 m field site of undeformed

first-year landfast sea ice with relatively uniform snow cover. All airborne products have 9 cm/px resolution. Our UAV data

include 1) an RGB orthomosaic, 2) a DEM, corrected with magnaprobe snow depth data used as a snow depth proxy, 3) a

surface temperature orthomosaic, 4) red band intensity for the qualitative detection of surface dust and darker areas, and

5) modeled small-scale irradiance patterns, using the DEM to account for slope, aspect and shading. We analyze kernel355

density estimation (KDE) functions to identify patterns and correlations across sub-datasets (e.g. with and without visible

sediment deposition). Our results reveal a complex system of snow-atmosphere interactions even within a snowpack

initially defined as "flat" and relatively uniform.

The test field was situated on sea ice with an average thickness of 2.4 ± 0.04 m across 2449 measurements, showing

relative variation of about 1 % (Fig. 7). Thickness ranged from 2.28 m to 2.52 m with a measurement uncertainty of 0.1 m360
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(Table 1). Since sea ice is buoyant, changes in thickness lead to only minor surface elevation variations, as most of the

ice mass remains submerged. In contrast, snow depth varied significantly more at 32 % (see Table 2), even on this "flat"

field, highlighting the snow cover’s heterogeneity driven by wind processes.

Figure 7. Sea ice thickness (m) distribution for 2449

measurements points surveyed with the EM31. The

bandwidth parameter for the KDE function is 2.

Table 2. Mean thickness and Standard Deviation (STD) for the sea ice thickness

(m), snow depth proxy (m) derived from the DEM and snow depth (m) measured

with the magnaprobe, the number of data points (n) and the relative change (%)

for each dataset.

Thickness n Mean ± STD (m) Rel. Change (%)

Sea ice 2449 2.4 ± 0.04 1

Snow (DEM) 6211943 0.16 ± 0.06 30

Snow (magna) 813 0.1 ± 0.04 32

3.1 Airborne maps of snow depth proxy and surface temperature

We present the results of our airborne surveys in Fig. 8 and Fig. 9. The RGB orthomosaic in Fig. 8a provides an overview365

of the study area and allows us to identify areas with visible sediment deposition. The DEM (Fig. 8b) reveals relatively

high variability in the snow depth proxy values, mainly due to wind-induced snow dunes (e.g. Fig. 8c, lower left). Although

we expected dunes to align with the predominantly southerly winds during our campaign (Fig. A1b), we did not find a

significant preference for the orientation of local aspects (Fig. 10c), which we assume is a proxy for dune orientation.

While dune orientation is outside the scope of this study, evaluating a longer period of wind data preceding our field370

campaign would be necessary to understand dune alignment. The snow depth proxy ranges from 0 to 0.5 m, with a mean

of 0.16 and a standard deviation (STD) of± 0.06 m (Fig. 11a). We identified values exceeding 0.5 m as snow drifts around

obstacles, such as measurement stations, solar panels, and flags.

In Fig. 9a, we present the TIR orthomosaic with temperatures ranging from -17.5 to -5 °C. The mean temperature is

-14.7 ± 0.4 °C (Fig. 11b). Temperatures exceeding -4 °C are caused by the measurement infrastructure and are masked375

in the TIR orthomosaic. Fig. 8c,d and Fig. 9c, d provide close-ups of an area that highlights variations in RGB color,

DEM variations/snow depth, and surface temperatures. Areas with significant sediment deposition are visible by the eye

as darker regions in the RGB orthomosaic (Fig. 8a, c) and red band orthomosaic (Fig. 9b, d). Those sediment patches

are warmer than areas with cleaner snow as sediment has a lower albedo and absorbs more shortwave radiation (Fig.

9a, c). We also observe that the shaded sides of the snow dunes have lower temperatures (Fig. 9c, lower left) and are380

also darker in RGB and in the red band (Fig. 8c, Fig. 9d). In the RGB orthomosaic, two main features stand out: the
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Figure 8. Airborne products (RGB orthomosaic and DEM) with 9 cm/px resolution. White spots are masked stations and targets (see

Fig. A2). (a) RGB orthomosaic of the CS, with dark patches showing areas with sediment deposition. The yellow arrow indicates the

sun’s position in the north-east. (b) DEM of the CS showing the snow depth proxy (m). The color bar is set from 0 to 0.5 m to minimize

the impact of remaining measurement stations and flags to better show the spatial variability of the snow cover. (c) Close-up of the

RGB orthomosaic of an area with variations in snow topography and surface impurities. (d) Close-up of the snow depth proxy in the

same area as (c).
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sediment deposition in the northeastern corner of the image and the prominent snow dunes in the southern part. The

snow dunes look "brighter", which could be due to snow thickness or due to irradiance (shading) effects. Both features,

the sediment and the dunes, are visually distinguishable and provide additional information for understanding the drivers

of surface temperature. Although the snowpack may appear relatively flat, there are significant variations in DEM height385

(snow depth, surface roughness, local slope/aspect), impurity content and surface temperatures.

3.2 Possible drivers of small-scale surface temperature variations: snow depth, sediment deposition or

irradiance?

In this section, we use the UAV-derived maps of snow depth, surface temperature, and red bad values, as well as the

derived map of solar irradiance, to try and disentangle the relevant drivers of local surface temperature variations. All390

statistical correlations are tabulated in Table A1.

3.2.1 Snow depth and surface temperature

To test our original hypothesis that snow surface temperatures are driven by snow depth (given relatively uniform sea

ice thickness), we first explore the correlation between the snow depth proxy and snow surface temperature from our

airborne maps (Fig. 8b and Fig. 9a). The scatter plot (Fig. 12a) reveals a very weak but statistically significant correlation395

(rs=0.16, Table A1). Considering the very weak correlation, we can conclude that, for this particular case, our hypothesis

that snow depth is the primary driver of surface temperature is not valid.

Given the visible sediment patches and their strong effect on albedo Warren and Wiscombe (1980), our next steps are

to examine the correlation: a) in areas without visible sediment deposition and b) in areas dominated by visible sediment

deposition (e.g. Fig. 8c, upper left area). To do this, we split the data into three sub-datasets: 1) the "entire field" dataset,400

containing 6,211,943 data points (approximately 99.9 % of the original dataset); 2) the "sediment" dataset, which includes

285,396 data points (approximately 5 %) from areas with visible sediment deposition and a small fraction of clean snow

(Fig. A2b); and 3) the "no sediment" dataset, containing 341,473 data points (approximately 6 %) representing clean snow

with no visible sediment (Fig. A2c). We delineated sediment patches by manually drawing polygonal areas around visible

sediment deposits in QGIS (Fig. A2b). Each "sediment" patch also includes areas of clean snow. For the "no sediment"405

dataset, we randomly selected rectangular patches where no visible sediment was apparent, ensuring a similar number

of samples for comparability. However, the "no sediment" dataset may still contain impurities that are not classified as

sediment due to their subtle appearance in the RGB orthomosaic. Before manually delineating the patches, we tested

various automatic R/G/B thresholds to identify impurities, but the results were unsatisfactory, partly because distinguishing

between impurities and shaded areas proved challenging.410

The "no sediment" dataset shows a similarly significant but very weak positive correlation between surface temperature

and snow depth proxy(rs=0.06, Fig.12g). This weaker correlation, compared to the "entire field" dataset, is likely due to

a narrower temperature range caused by the absence of the warmer sediment patches. The "sediment" dataset shows

a slightly stronger correlation (rs=0.26, Fig.12d). It also has a higher mean surface temperature and greater temperature
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Figure 9. Airborne products (surface temperature and red band orthomosaics), both with 9 cm/px resolution. White spots are masked

out stations and targets (see Fig. A2). (a) TIR orthomosaic of the CS with surface temperature in °C. The color bar is set from -8

to -16 °C to minimize the impact of remaining measurement stations, targets and flags and display the spatial variability of the snow

surface temperature. (b) Red band (0 to 255) orthomosaic of the CS, with dark patches showing areas with sediment deposition. (c)

Close-up of the same area with snow surface temperatures in °C. (d) Close-up of the same area with red band values.
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Figure 10. Scatter plot showing the relationship between slope and irradiance for the entire field, excluding stations and targets (a).

(b) Histogram for the irradiance, the slope (c) and the aspect (d), each across the CS test field.

variability (-13.97 ± 0.82 °C; Fig. 13b, Fig. 11f) compared to the "no sediment" dataset ((-14.8 ± 0.3 °C); Fig. 13b, Fig.415

11j). The larger variability in the "sediment" dataset suggests that the delineated sediment patches include both clean

and "dirty" snow, likely reflecting variations in sediment concentration (Fig. 13b, Fig. 11f). The "sediment" dataset also

shows a higher mean snow depth proxy and slightly greater variability (0.21 ± 0.07 m) compared to the "no-sediment"

dataset (0.14 ± 0.05 m; Fig. 13a, Fig. 11e, i). In the "entire field" dataset, the mean snow surface temperature and snow

depth proxy are -14.7 ± 0.4 °C and 0.16 ± 0.06 m, respectively (Fig. 13a,b; Fig. 11b, a). In summary, excluding visible420

sediment patches did not strengthen the validity of our hypothesis that snow depth is the primary driver of snow surface

temperatures in the studied area.

3.2.2 Sediment deposition and surface temperature

Given the lack of a strong correlation between the snow depth proxy and snow surface temperature, we now investigate

an alternative potential driver: surface impurities. Surface impurities largely influence the snow albedo and, consequently,425

surface temperatures (Warren and Wiscombe, 1980; Doherty et al., 2010; Réveillet et al., 2022). We use the red band

of the orthomosaic as a proxy for "surface sediment darkness". While we acknowledge that the red band is not a perfect

quantitative indicator for sediment concentration – and is also influenced by factors like shaded areas or variations in thin

snow cover thickness – we must also consider the impact of the RGB camera’s automatic settings (ISO, aperture, shutter

speed). These settings likely adjusted in response to changing scene features and global and local illumination. Although430

we used the averaging blending mode to minimize exposure inconsistencies, this approach does not entirely eliminate

the effect of varying camera responses across different flight lines. As a result, these camera-related factors may still

contribute to the observed spread in the red band values and impact the strength of the observed correlations. However,

we assume that in areas with high sediment concentrations, the impact of these factors on red band "brightness" is

minimal. As in the previous section, we assess the correlation between surface temperature and red band values for435
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Figure 11. Histograms with PDFs for the snow depth proxy, surface temperature, red band values and irradiance for the three sub-

datasets. The first row is the "entire field" dataset, the second row is the "sediment" dataset, and the last row is the "no sediment"

dataset. The snow depth bin size (a,e and i) is 2 cm. The temperature bin size (b,f and j) is 0.5 °C. The red band bin size (c,g and k) is

5. The irradiance bin size (d, h, and l) is 10 Wm−2.

the "entire field" dataset (Fig.12b), for the "sediment" dataset (Fig.12e) and for the "no sediment" dataset (Fig.12h). This

approach helps us better understand the impact of visible sediment patches on the observed thermal signal.

While there is a weak but significant correlation between the surface temperature and red band intensity (rs=0.35,

Table A1) for the "entire field" dataset, the scatterplot (Fig.12b) shows an unexpected pattern. We explain this by looking

at the "sediment" and "no-sediment" datasets separately. The "sediment" dataset shows a weak but significant negative440

correlation between the red band intensity and surface temperature (rs=-0.23, Fig.12e). This means darker areas with
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low red band intensity have higher surface temperatures, which aligns with expectations since sediment absorbs more

shortwave radiation than snow (Ledley and Pfirman, 1997; Réveillet et al., 2022). The "no sediment" dataset shows

a moderate positive correlation between red band intensity and surface temperature (rs=0.4, Fig.12h), meaning darker

areas are colder – the opposite of what we found in the "sediment" dataset. Considering that even clean snow likely445

contains small amounts of impurities, this result is initially surprising. However, a closer look suggests that the red band

intensity variations in the "no sediment" dataset are likely due to differences in sunlight exposure, caused by small-scale

topography like snow dunes (Fig. 8c,d, Fig. 9c,d). We now understand that the pattern in Fig. 12b reflects a combination

of both datasets. The positive correlation for the "entire field" dataset is mainly driven by the "no sediment" (clean snow)

areas, as the "sediment" dataset is around 20 times smaller and has little impact on the overall correlation statistics. The450

mean red band intensity is 137 (± 9) for the "sediment" dataset and 145 (± 6) for the "no sediment" dataset (Fig. 11g,k,

Fig. 13c). The left-skew in red band values for all three areas suggests greater variability in the darker part of the red

band orthomosaic. This happens because clean snow (most pixels) can’t get much brighter in the red band. In contrast,

variations in illumination and sediment concentration (fewer pixels) significantly affect the lower range of red band values.

In summary, we find that red band values correlate more strongly with surface temperature than the snow depth proxy455

across all three sub-datasets. This suggests that the red band intensity – influenced by 1) impurity concentration, 2)

illumination variations, and 3) snow depth differences – predicts local surface temperatures. As shown in the previous

subsection, snow depth variations are not the main driver of surface temperature. The stronger correlation between red

band intensity and surface temperature in the "no sediment" dataset (rs=0.4) compared to the "sediment" dataset (rs=-

0.23), leads us to hypothesize that local illumination conditions, shaped by variable surface topography may significantly460

impact local surface temperatures.

3.2.3 Local irradiance and surface temperature

Building on the previous section’s findings that solar irradiance may significantly drive local temperature differences, we

assess the correlation between modeled irradiance and surface temperatures across all three sub-datasets (Fig. 12c, f,

i). Each sub-dataset shows a significant positive correlation between surface temperature and irradiance ("entire field":465

rs=0.22, "sediment": rs=0.22, "no-sediment": rs=0.24). The mean irradiance is nearly identical for all three sub-datasets

(Fig. 11d,h,l), but the variation (STD) is highest in the "sediment" dataset, likely due to higher snow depth and rougher

surface (Fig. 11e).

Fig. 10a shows the spread of modeled irradiance against the local slope at each pixel. The cluster of data points with

an irradiance of 71 Wm−2 present across the entire range of slope angles represents shaded areas receiving only diffuse470

shortwave radiation. The spatially averaged modeled irradiance for the test site, calculated using the measured snow

topography (slope and aspect) to adjust the solar effective zenith angle, is 592 ± 45 Wm−2, with values ranging from 71

to 1167 Wm−2. This modeled mean aligns closely with the measured irradiance of 594 Wm−2 at the time of calculation,

as we used observed shortwave radiation to determine atmospheric transmissivity and the fraction of the diffuse radiation.

Over the entire flight period (about 40 minutes), the temporal mean measured irradiance was 593 ± 10 Wm−2.475
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Figure 12. (a), (d) and (g) show the correlation between surface temperature and the snow depth proxy (the color bar is based on the

red band values). (b), (e) and (h) show the surface temperature and irradiance (the color bar is based on the red band values). (c),

(f) and (i) show the surface temperature and red band values (the color bar is based on the snow depth proxy). The first row contains

data points for the "entire field", excluding targets and measurement stations. The second row (d, e, f) only contains data points within

areas of visible sediment deposition ("sediment"). The last row displays data points for areas of clean snow without visible sediment

deposition ("no sediment"), excluding targets and measurement stations. Details on correlation statistics are in Table A1.
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Figure 13. KDE plots for (a) the snow depth proxy, (b) the surface temperature, (c) the irradiance, and (d) red band values for the

"entire field" (blue), the "sediment" dataset (yellow) and the "no sediment" dataset (red). The x-axis is cropped for a better display of

the distribution, and the bandwidth parameter was set to 5.

The Gaussian distribution of slope and aspects in the DEM (Fig. 10c, d) suggests a near-random terrain pattern without

a preferred alignment of the roughness features, which explains the normal distribution of the local irradiance calculation

(Fig. 10b).

While the measured irradiance – representing irradiance on a flat plane – and the spatially average modeled irradiance

(Fig. 10a, red and blue lines, respectively) are nearly identical because the overall energy reaching the area remains480

constant. However, if we account for the topography, the range (min-max) and variability (STD) in irradiance become

significant. This highlights the strong influence of small-scale roughness on local irradiance.

4 Discussion

4.1 Technical considerations for high-resolution mapping of snow topography and snow surface temperature

Our study provides high-resolution airborne maps of a snow depth proxy and snow surface temperature over an area of485

up to 200 m. Producing accurate maps of these variables requires three key technical considerations:

1. Precise georeferencing is essential for reliable spatial accuracy, requiring high-accuracy GPS and a sufficient

number of visible and thermal targets to co-locate RGB and thermal images. We recommend at least 10 GCPs for

a study site of 200x200 m.

2. Rigorous post-processing of TIR images is critical to ensure accurate temperature data. We developed a cor-490

rection algorithm that automatically detects and reduces temperature jumps caused by NUC correction events,

minimizing sensor temperature drift and improving data accuracy. Our algorithm can be applied to various camera

models, offering broad utility for studies beyond polar research.
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3. Ground-based temperature measurements are necessary to validate airborne temperature surveys. Airborne

temperature measurements should ideally be taken near local solar noon to capture peak solar radiation, minimize495

radiation variability, and maintain a high sun angle to reduce shading. Clear skies are preferable to avoid cloud

shadows that alter the surface temperature, though consistent high cloud cover can also be acceptable. The "best"

conditions depend on the specific purpose of the survey, but random intermittent cloud cover should always be

avoided as it is problematic.

At least two non-contact infrared radiometers (e.g. Apogee sensors or equivalent) should be set up during the flight500

to measure snow surface temperature and calibrate the airborne measurements. To ensure accurate calibration,

there should be a significant temperature difference between targets (e.g. a hot target like sediment, sea ice or a

temperature-controlled target with known emissivity, and a cold target like clean snow).

4. Ground-based snow depth measurements are necessary to validate and bias-correct airborne snow depth sur-

veys (on flat sea ice) and calculate the snow depth proxy. These measurements should be taken in the flight area,505

though not necessarily during flight.

Additionally, a balance between area coverage and flight duration is necessary to avoid changes in local irradiance (e.g.,

the measured irradiance during the entire flight increased from 575 to 609 Wm−2). The non-uniform snow cover and the

potential imprecision of the magnaprobe GPS locations present a challenging validation setup. We used the magnaprobe

measurements to correct the offset of the airborne DEM (Fig. 2). This approach is valid primarily due to the small range510

of variability in the sea ice thickness and the smooth sea ice surface. In areas with heterogeneous sea ice thickness and

greater surface roughness – such as pack ice (Haas, 2004) or ridged ice (Itkin et al., 2023) – the DEM will reflect the

combined topography of variable sea ice thickness, ridging, and snow depth.

4.2 The role of snow depth

We initially hypothesized that, assuming uniform sea ice thickness and smooth sea ice surface, thicker snow would result515

in lower surface temperatures due to its higher thermal insulation and albedo. However, our data show a weak positive

correlation between the snow depth proxy and surface temperature, contradicting this hypothesis (Fig. 12a, Table A1). The

presence of visible sediment depositions at the snow surface, which are associated with higher temperatures (Fig. 9c,d),

prompted us to evaluate areas with and without sediment separately. We defined two sub-datasets for analyses: 1) the

"sediment" dataset (areas with visible sediment, some clean snow), and 2) the "no sediment" dataset (areas with visible520

clean snow only). Both sub-datasets are of comparable size. The "no sediment" dataset shows no correlation between the

snow depth proxy and surface temperature, further disproving our hypothesis that snow depth is the key driver of snow

surface temperatures. In contrast, the "sediment" shows a weak but significant correlation between the snow depth proxy

and surface temperature, suggesting that sediment deposition is influenced by the same wind processes as snow depth,

with both snow and impurities accumulating in the same areas. This is supported by the higher mean snow depth in the525

"sediment" dataset (0.21 m) than in the "no sediment" dataset (0.14 m) (Fig. 11e, i). In summary, the positive correlation
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that we observe between snow depth and snow surface temperatures is primarily driven by sediment deposition rather

than snow depth itself. This emphasizes the role of sediment on albedo and radiation absorption rather than the role

of snow depth on thermal resistance. This will have the effect that, when air temperatures rise later in the season, the

increased solar radiation absorption by the sediment will reduce the snow specific surface area and accelerate snow melt,530

further decreasing the albedo and triggering the albedo feedback (Ledley and Pfirman, 1997; Skiles et al., 2018). While

snow depth plays an important role in the energy balance of sea ice through albedo and thermal conductivity effects

(Warren and Wiscombe, 1980), it is not the primary driver of surface temperatures in our case, even when excluding

visible surface impurities.

4.3 The role of "darker areas": sediment or shadows?535

Building on our finding that sediment strongly influences surface temperatures, we correlated the surface temperature

with the red band values from the RGB orthomosaic. Sediment particles – like dust, soot, or organic matter – absorb

more sunlight in the visible spectrum than clean snow (Tuzet et al., 2019; Cui et al., 2021). While the red band values do

not directly affect the surface energy balance, we use them as a proxy for impurities.

The "sediment" dataset shows a weak negative correlation (rs=-0.23) between red band values (where lower values540

represent "darker" pixels) and surface temperature – an expected result, because impurities generally increase radiation

absorption. Surprisingly, the "no sediment" dataset showed a moderate positive correlation (rs=0.4) between red band

values and surface temperature, which was initially puzzling, because we saw no reason that darker red band values

should have lower temperatures. We interpret this positive relationship through the influence of solar illumination and

shading variations due to local topography: darker, shaded areas appear colder, while sunlit areas are warmer, leading545

to the observed correlation. In the "sediment" dataset, the red band values reflect a combination of sediment concentra-

tion (which drives a negative correlation with surface temperature) and local irradiance variations (which drive a positive

correlation). This overlap results in a weak overall correlation (rs=-0.23) in the "sediment" dataset. Despite the competing

effects of impurities vs irradiance, the negative correlation is dominant, indicating that for areas with higher sediment con-

centrations, the effect of impurities on surface temperature outweighs that of local irradiance. The stronger correlation in550

the "no sediment" dataset (rs=0.4) suggests that surface temperature in these areas is more directly driven by irradiance

and shading than by the presence of impurities. Therefore, for clean snowpacks without significant sediment deposition,

our results highlight the dominant role of solar illumination and shading in driving surface temperature and local energy

balance.

Our discussion does not include the secondary effect of impurities, which leads to a lowering of albedo due to warmer555

snow temperatures and faster snow melt in the spring season. Furthermore, sediment deposition can also alter the

surface texture and roughness of the snow through preferential melt. A rougher snow surface traps the light reflected

multiple times between protruding features and lowers the effective solar zenith angle, leading to reduced reflectance

(Manninen et al., 2021).
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Figure 14. Correlation between irradiance (Wm−2) against red band intensity for "entire field" dataset (rs=0.44) (a), "sediment" dataset

(rs=0.41) (b) and "no sediment" dataset (rs=0.44) (c). We cannot with certainty explain the horizontal cluster from about 140 to 160 red

band intensity that stretches across a larger range of irradiances than the rest of the data. However, the only connection we found for

this cluster is snow depth or the associated surface roughness, because the cluster disappears for higher snow depths, as discussed

in A5 (Fig. A3). This cluster, however, has a low data density (Fig. A3d) and is therefore outside of the scope of our study.

4.4 The role of irradiance560

We just proposed that the red band values are likely connected to local irradiance, which is why our results show a

correlation between red band intensity and surface temperatures. To test this hypothesis that the red band intensity is

connected to irradiance (illumination and shading), we calculated topography-dependent irradiance for each pixel. We

found a moderate correlation between the red band values and irradiance across all three datasets (Table A1), confirming

that red band value variations are at least partially caused by irradiance variations (Fig. 14).565

In the "no sediment" dataset, the correlation between red band values and irradiance (rs=0.44) is comparable to the

correlation between red band values and surface temperature (rs=0.4), supporting our hypothesis that irradiance is a

key driver of surface temperature. While the the correlation between red band values and irradiance for the "sediment"

dataset is the same (Fig. 13d) because the irradiance depends on topography only, the values associated with sediment

deposition exert a more dominant influence on surface temperature (Fig. 12e), suggesting that sediment has a stronger570

impact on surface heating than shading and irradiance have on surface cooling.

Even at our relatively flat site, the topography-dependent irradiance shows considerable variations (Fig. 10) with 95% of

the data (2 STD) ranging between 502-682 Wm−2 – approximately ± 20% from the areal mean. This spatial variability in

irradiance (and surface temperature) arises from high surface roughness and the influence of seemingly small changes

in local topography on the surface temperature, primarily by altering the apparent solar zenith angle(Wiscombe and575

Warren, 1980). While these small-scale topographic variations do not affect mean areal irradiance – since they cannot

change the total incoming radiation over a given area – they may nonlinearly influence the local snowpack energy balance

(Weller, 1969; Hao et al., 2022). This can lead to localized temperature gradients (vertical and horizontal) and associated
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changes in snow microstructure. For example, temperature differences between sun-exposed and shaded sides of dunes

can drive lateral heat movement(Sturm and Holmgren, 1994), altering the snow microstructure and impacting both albedo580

and thermal conductivity(Clemens-Sewall et al., 2024). In more extreme cases, this lateral heat transfer and associated

metamorphism can result in changes to snow height and surface topography through snow sublimation (Gow, 1965;

Orheim, 1968; Weller, 1969). Later in the season, when surface temperatures approach 0 °C, even small variations in

local irradiance can trigger differential melting, freezing and densification processes, further amplifying spatial variability

in the snowpack.585

Moreover, surface roughness – even from smaller slopes – can distort the spectral shape of albedo through multiple

reflections, leading to inaccurate estimates of solar radiation interception (Picard et al., 2020; Manninen et al., 2021).

Slopes as small as 1 ° can cause these distortions, with their complexity increasing with increasing slopes. Accurate

estimates of albedo, therefore, require accounting for surrounding terrain at the full range of scales(Picard et al., 2020;

Manninen et al., 2021; Larue et al., 2020).590

We demonstrate that if models do not account for snow surface roughness – either due to the lack of availability of local

topography data or insufficient model resolution – they tend to underestimate the variability in irradiance and simplify the

amount of energy available for localized snow metamorphism and melt processes, particularly in areas with pronounced

topography variations. Our results suggest that incorporating more detailed representations of snow surface topography

(or a scale-appropriate parameterization, such as a statistical distribution of topographical parameters) and its influence595

on irradiance could improve the accuracy of energy balance models for sea ice and snow-covered regions. Further

studies are needed to quantify the impact of surface roughness on surface energy balance and refine models to better

capture these variations under diverse environmental conditions. Future efforts should focus on evaluating the sensitivity

of large-scale models to the spatial variability of snow and enhancing their ability to represent surface roughness effects

on irradiance, ultimately leading to more accurate predictions of sea ice melt dynamics.600

4.5 Limitations and future directions

While this study contributes valuable insights, we acknowledge several limitations and also outline directions for future

research. The spatial scale of our study is constrained by flight duration, which is limited by battery life. To minimize

temperature fluctuations caused by changing solar radiation and fluctuating cloud coverage, which drive changes in

surface temperature, we restricted flight time. For our 200x200 m test site, we used two pairs of batteries and completed605

the survey in two 20-minute flights. During this time, solar radiation gradually increased from 575 Wm−2 to 609 Wm−2,

and our TIR surface temperature map was generated using data from both flights, which were conducted close to solar

noon to mitigate radiation changes.

Our findings show that irradiance and impurities are the strongest predictors of surface temperatures for this test site

and play a key role in the energy balance. However, our method for calculating the snow depth proxy is limited to flat610

and smooth sea ice. Surface elevation cannot reliably serve as a proxy for high-resolution snow depth on deformed

or uneven sea ice, which exhibits significant spatial heterogeneity in thickness and surface roughness. Consequently,
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surface topography on deformed or rough sea ice cannot reliably serve as a proxy for snow depth. The role of irradiance,

however, is even more significant in regions with greater surface roughness.

Looking ahead, we plan to expand the applicability of the methods introduced in this study by testing them at other sites615

with different snow and sea ice conditions. Applying these techniques to areas with deformed sea ice and ridges (surface

temperature and roughness only), or borderline zones with bare ice and thin snow patches will provide valuable insights

into surface drivers of the sea ice energy balance. This will also refine the robustness and adaptability of our methods.

By validating them across diverse test sites, we aim to enhance the utility for broader applications. Ultimately, we aim for

using such high-resolution data to help improve parameterizations in climate models, as well as provide data for satellite620

remote sensing algorithms in more heterogeneous environments.

5 Summary and Conclusions

This study demonstrates that UAV-based remote sensing is an effective method for assessing snow depth and surface

temperatures on uniform (flat and smooth) landfast sea ice in the Ross Sea, Antarctica. By utilizing high-resolution RGB

and TIR orthomosaics alongside a DEM, we successfully mapped the snow depth, surface temperature, and visible sed-625

iment deposition. The DJI Matrice 30T UAV, combined with precise ground georeferencing and the novel NUC correction

algorithm introduced in this study, provides viable insights and solutions for the challenges of measuring airborne sur-

face temperatures. The technical contribution here lies in addressing and mitigating several key sources of error that can

impact airborne temperature measurements. Our algorithm for correcting NUC camera calibration events has broader

applicability, extending beyond polar research and offering valuable tools for many users. These solutions, though inno-630

vative, require a reasonably high ground-truthing effort, which may not be feasible in less extensive campaigns. However,

they highlight the complexity of achieving accurate surface temperature measurements in such an environment. Our work

underscores the feasibility and importance of conducting high-resolution snow measurements on landfast sea ice. While

our methods of retrieving surface roughness and temperature are valid for all ice types, we acknowledge that using the

DEM as a snow depth proxy in heterogeneous ice environments is not valid.635

Our UAV mapping of high-resolution surface topography of snow and ice surface temperatures (Fig. 8, 9) emphasizes

the spatial variability of snow and its relatively large surface roughness, as well as the impact of even small changes

in local topography on surface temperatures. By quantifying small-scale spatial variability, we provide insights into how

these variations may influence the surface energy balance. These findings also shed light on the complexities of modeling

snow and ice in sea ice environments.640

The statistical analysis of the high-resolution data highlights the impact of small-scale snow surface topography, which

drives irradiance variability and influences the evolution of snow-covered sea ice. We discovered that, in our case study,

assuming a flat ice surface without surface roughness significantly underestimated modeled irradiance variability (592 ±
45 Wm−2 ranging from 71 to 1167 Wm−2). This is relevant because the relationship between irradiance and temperature

can exhibit non-linearities; for instance, changes in slope or aspect can disproportionately affect the amount of solar645
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radiation received, leading to localized heating effects. This non-linearity can enhance the thermodynamic response of

snow-covered surfaces, influencing not only the melt rates but also sediment transport processes, as areas receiving

more concentrated irradiance may experience accelerated melting compared to their surroundings.

Future research should focus on investigating model sensitivity to local irradiance values at different scales and refining

predictive models to better forecast changes in polar energy budgets. The findings and methods from our study provide650

valuable insights for both polar research and broader scientific applications, underscoring the need for higher resolution

data to improve our understanding energy balance drivers across scales in these critical environments.

Appendix A: Additional figures and statistics

Figure A1. (a) Hourly air temperature and wind speed average during field campaign at CS test field. The vertical yellow bar indicates

the UAV mission. (b) The prevailing wind directions at the CS test field during the field campaign.

Figure A1. Sea ice surface at two different snowpit locations (AS006, AS002) inside the 200x200 m CS test field during our field

campaign showing the flat and smooth sea ice surface.
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Figure A3. (a) scatter plot of red band intensity versus snow depth proxy (m) for "no sediment" sub-dataset (rs=0.08). The red line

indicates the visible cluster separation. (b) Scatter plot of red band intensity versus irradiance (Wm−2) for "no sediment" dataset,

considering only data points where the snow depth proxy exceeds 0.25 m (rs=0.69). (c) Same as (b) but for snow depth proxy values

below 0.25 m (rs=0.41). Statistics details are provided in TableA1. These plots reveal that the horizontal cluster observed the red

band intensity range of 140 to 160 disappears when considering only snow depth proxy values is connected to the snow depth as it

disappears when considering only snow depth proxy values above 0.25 m, indicating a connection to snow depth. For snow depth proxy

values below 0.25 m, the entire irradiance range is present, suggesting a link to surface roughness. However, the red band intensity

shows no direct dependence on the surface roughness, and a more detailed analysis is beyond the scope of this study. (d) Highlights

that the horizontal extent of the cluster corresponds to a region with low data density.

Figure A2. Masks used to create the three sub-data sets "entire field" (a), "sediment" (b) and "no sediment" (c) in the RGB orthomosaic.

Data availability. Raw data is available at: (Dadic et al., 2025). Processed data is available at: (Martin et al., 2025).
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Figure A4. Tidal movements (m) at the Scott Base tidal gauge from the sea level recorder (nitrogen bubbler system with a paroscientific

pressure transducer located on a bottom-mounted spigot of the osmosis boom and barometer). The data is recorded in 5 minute

intervals.

Table A1. Statistics table for Fig. 10. Entire field: all data points excluding targets and measurement stations. Sediment: data points

within areas of visible sediment deposition (and clean snow), excluding targets and measurement stations in these areas. No sediment:

areas with no visible sediment deposition, excluding targets and measurement stations. The three datasets are displayed in Fig. A2.

The correlation strengths are formatted as plain (very weak), italic (weak), bold (moderate), and underlined (strong) font styles.

Parameter A Parameter B Data points Spearman (rs) p-value (α = 0.01) Info

Temperature Snow depth proxy 6211943 0.16 <1e-16 entire field

Temperature Snow depth proxy 285396 0.26 <1e-16 sediment

Temperature Snow depth proxy 341473 0.06 <1e-16 no sediment

Temperature Red Band 6211943 0.35 <1e-16 entire field

Temperature Red Band 285396 -0.23 <1e-16 sediment

Temperature Red Band 341473 0.40 <1e-16 no sediment

Temperature Irradiance 6211943 0.22 <1e-16 entire field

Temperature Irradiance 285396 0.22 <1e-16 sediment

Temperature Irradiance 341473 0.24 <1e-16 no sediment

Red band Irradiance 6211943 0.44 <1e-16 entire field

Red band Irradiance 285396 0.41 <1e-16 sediment

Red band Irradiance 341473 0.44 <1e-16 no sediment

Red band Snow depth proxy 341473 0.08 <1e-16 no sediment

Red band Snow depth proxy (>0.25 m) 16965 0.69 <1e-16 no sediment

Red band Snow depth proxy (<0.25 m) 324508 0.41 <1e-16 no sediment
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